中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Superoxide Batteries Oxygen Redox without Catalysts
Superoxide Batteries Oxygen Redox without Catalysts
教师介绍
Dr. Yiying Wu received his B.S. in chemical physics from the University of Science and Technology of China in 1998, and his Ph.D. in chemistry from the University of California at Berkeley in 2003 with Prof. Peidong Yang. He then did his postdoctoral research with Prof. Galen D. Stucky at the University of California, Santa Barbara, and joined the chemistry faculty at The Ohio State University in the summer of 2005. He was promoted to associate professor with tenure in 2011 and to full professor in 2014. He has been serving as an associate editor for ACS Applied Materials and Interfaces since 2013. His group focuses on materials chemistry for energy conversion and storage. He is the inventor of the one-electron K-O2 battery and pioneered solar batteries that integrate solar harvesting with energy storage. He received Cottrell Scholar Award in 2008, NSF CAREER Award in 2010, CAPA Biomatik Distinguished Faculty Award in 2014, and Midwest Energy News “40 under 40” in 2015. His invention of K-air battery received DOE Clean Energy Prize in 2014.

本讲教师:Yiying Wu
所属学科:理科
人  气:890

课程介绍
Here, I will present our systematic investigation of a K–O2 battery that uses K+ ions to capture superoxide (O2-) to form the thermodynamically stable KO2 product. This allows for the battery to operate through the facile one-electron redox process of O2/ O2-. Without the use of catalysts, the battery shows a low discharge/charge potential gap of less than 50 mV at a modest current density. The similar idea has also been applied to Na-O2 batteries. I will also present our recent progress in “solar battery”, which possesses the dual functions of solar energy harvesting and storage in a single device. An example is 'lithium−iodine solar flow battery' that brings together a lithium–iodine redox-flow battery and a dye-sensitized photoelectrode. The photoexcited electron transfer between the photoelectrode and the iodine catholyte enables solar-assisted charging of the flow battery. Such a hybrid device has promising applications in building integrated solar harvesting/storage, solar farms and solar fuelling stations.

评论

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:10186719
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602922;E-mail:wlkt@ustc.edu.cn。