中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Tunable negative magnetoresistance in hydrogenated graphene
Tunable negative magnetoresistance in hydrogenated graphene
教师介绍
Dr. Jian-Hao Chen obtained his PhD in Physics under the supervision of Prof. Ellen Williams at University of Maryland at College Park, Maryland, United States in 2009. Thereafter, he worked as a Research Fellow in the nanoelectronics group of Prof. Michael Fuhrer at University of Maryland and in Prof. Alex Zettl’s group at University of California at Berkeley. Since March 2013 he joined Peking University as an Associate Professor and Principle Investigator of the Laboratory for Nanoelectronics and In-Situ Quantum Transport. His present research is focused on studying the physics and applications of low-dimensional electronic materials and its nanostructures, manipulation of material properties at the atomic scale, and in-situ quantum electrical transport in ultra-high vacuum environment. His peer-reviewed publications include three articles in Nature Physics, one article in Nature Nanotechnology and three articles in Physical Review Letters, with a total SCI citation of more than 3900.

本讲教师:陈剑豪
所属学科:理科
人  气:971

课程介绍
The problem of unconventional magnetism in materials without d and f electrons has attracted continuous attention. In particular, a lot of efforts have been devoted to understand the origin and effects of magnetic moments induced in graphene with structure defects such as missing carbon atoms, absorption of light atoms such as hydrogen or fluorine. We have measured the magnetoresistance (MR) of graphene at low temperature with in-situ hydrogenation in ultra-high vacuum environment. Large negative MR was found in hydrogenated graphene which could be tuned by carrier density and sample temperature. Depending on the density of absorbed atomic hydrogen and carrier density, large linear negative MR was found which did not saturate up to 9 Tesla. Such negative MR could be the manifestation of local moments created by atomic hydrogen absorbed on graphene.

评论

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:11099809
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602922;E-mail:wlkt@ustc.edu.cn。