中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Preconditioned Steepest Descent (PSD) solver for regularized convex optimization problems
Preconditioned Steepest Descent (PSD) solver for regularized convex optimization problems
教师介绍

本讲教师:王成
所属学科:理科
人  气:409

课程介绍
摘要:A few preconditioned steepest descent (PSD) solvers are presented for the certain optimization problems, in which the solution corresponds to a convex energy functional. The highest and lowest order terms are constant-coefficient, positive linear operators. By using the energy dissipation property, we derive a discrete bound for the solution, as well as an upper-bound for the second derivative of the energy. These bounds allow us to investigate the convergence properties of our method. In particular, a geometric convergence rate is shown for the nonlinear PSD iteration applied to the regularized equation, which provides a much sharper theoretical result over the existing works. Some numerical simulation results are also presented in the talk.

评论

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:11079267
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602922;E-mail:wlkt@ustc.edu.cn。