中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Poincaré-Wirtinger and linear isoperimetric inequalities on a class of indecomposable integral currents and the Plateau problem in codimension 1 homology classes
Poincaré-Wirtinger and linear isoperimetric inequalities on a class of indecomposable integral currents and the Plateau problem in codimension 1 homology classes
教师介绍

本讲教师:DE PAUW Thierry
所属学科:理科
人  气:302

课程介绍
Abstract:If X is a smooth compact Riemannian manifold then each homology class with integer coefficients admits a mass minimizing integral current representative.This result,due to H. Federer and W.H.Fleming, relies on compactness and the isoperimetric inequality.In this talk I extend this result to a class of singular spaces X. These include semialgebraic sets,sub analytic sets, and more generally sets definable in any o-minimal structure.Simple examples of cusps show that the Euclidean isoperimetric inequality does not hold in this generality and we must settle for a weaker version. This leads to developing a theory of functions of bounded variation defined on integral currents.

评论

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:15349788
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602922;E-mail:wlkt@ustc.edu.cn。