中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Numerical Solution of PDE based on Bivariate Spline Functions
Numerical Solution of PDE based on Bivariate Spline Functions
教师介绍

本讲教师:Ming-Jun Lai
所属学科:理科
人  气:244

课程介绍
摘要:Bivariate spline functions are piecewise polynomial functions over triangulation. I shall explain a constrained minimization approach to use bivariate splines for numerical solution to partial differential equations. Three different PDEs will be used to demonstrate the effectiveness and efficiency of bivariate spline methods. (1) second order elliptic PDE in non-divergence form, (2) Navier-Stokes equations in stream function formulation, and (3) Helmholtz equation with large wave number. Mainly, I will explain the usefulness of smooth constraints. For example, bivariate splines enable us to use the stream function formulation which leads to numerical solution of one stream function instead of two components of velocity and one pressure function. For another example, when using the potential function formulation of Maxwell equations, we need to solve Helmholtz equation. As the electric and/or magnetic fields are very smooth, smooth spline functions are good choices to approximate these fields. Our numerical results show that we are able to solve Helmholtz equation with wave number 500 or more over my laptop computer. Some theoretical study on the existence, uniqueness and stability of spline solutions will also be explained.

评论

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:16351064
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602922;E-mail:wlkt@ustc.edu.cn。