中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement
Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement
教师介绍

本讲教师:孟雄
所属学科:理科
人  气:170

课程介绍
报告摘要:In this talk, an analysis of the accuracy-enhancement for the discontinuous Galerkin (DG) method applied to one-dimensional scalarnonlinear hyperbolic conservation laws is carried out. This requires analyzing the divided difference of the errors for the DG solution. We therefore first prove that the $alpha$-th order $(1 le alpha le k+1)$ divided difference of the DG error in the$L^2$ norm is of order $k+3/2-alpha/2$ when upwind fluxes are used, under the condition that$|f'(u)$ possesses a uniform positive lower bound. By the duality argument,we then derive superconvergence results of order $2k+3/2-alpha/2$ in the negative-order norm, demonstrating that it is possibleto extend the Smoothness-Increasing Accuracy-Conserving filter to nonlinear conservation laws to obtain at least$3k/2+1$th order superconvergence for post-processed solutions. As a by-product,for variable coefficient hyperbolic equations, we provide an explicit proof foroptimal convergence results of order $k+1$ in the $L^2$ norm for the divided differences of DG errors and thus $(2k+1)$th order superconvergence in negative-order norm holds. Numerical experiments are given that confirm the theoretical results.

评论

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:15062303
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602922;E-mail:wlkt@ustc.edu.cn。