中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Combinatorial Gauss-Bonnet theorem and the Alexander-Spanier cohomology
Combinatorial Gauss-Bonnet theorem and the Alexander-Spanier cohomology
教师介绍

本讲教师:Hitoshi Moriyoshi
所属学科:理科
人  气:139

课程介绍
Abstract:For a smooth surface the celebrated Gauss-Bonnet theorem tells that the integration of the Gauss curvature is equal to the Euler number of surface times 2pi. Also on a combinatorial surface, namely a polyhedral surface, there is a similar theorem to the above, that is, the sum of Angle defect at each vertex amounts to the Euler number of surface times 2pi. This theorem goes back at least as far as Descartes. Thus the Angle defect seems to be a counterpart of the Gauss curvature on a polyhedral surface. In this talk we justify it by introducing a notion of the Alexander-Spanier cohomology, which also make possible a generalization of the theorem in higher dimensional case. The main subjects in my talk are polyhedrons, which are definitely accessible for everyone.

评论

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:15930715
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602922;E-mail:wlkt@ustc.edu.cn。