中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Global well-posedness for NLS outside L^2
Global well-posedness for NLS outside L^2
教师介绍

本讲教师:王玉昭
所属学科:理科
人  气:106

课程介绍
Abstract:We first introduce a new function space whose norm is given by the l^p-sum of modulated Sobolev norms of a given function. In particular, we show that this space agrees with the modulation space on the real line and the Fourier-Lebesgue space on the circle. We use this equivalence of the norms and the Galilean symmetry to adapt the conserved quantities constructed by Killip-Visan-Zhang to the modulation space and Fourier-Lebesgue space setting. By applying the scaling symmetry, we then prove global well-posedness of the one-dimensional cubic nonlinear Schroedinger equation (NLS) in almost critical spaces. More precisely, we show that the cubic NLS on the real line is globally well-posed in almost critical modulation spaces, while the renormalized cubic NLS on Torus is globally well-posed in almost critical Fourier-Lebesgue space. This is a joint work with Tadahiro Oh at the University of Edinburgh.

评论

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:17075481
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602922;E-mail:wlkt@ustc.edu.cn。