中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Self-organized criticality in 2D forest fire processes
Self-organized criticality in 2D forest fire processes
教师介绍

本讲教师:Pierre Nolin
所属学科:理科
人  气:181

课程介绍
Abstract:Bernoulli percolation is a model for random media introduced by Broadbent and Hammersley in 1957. In this process, each vertex of a given graph is occupied or vacant, with respective probabilities p and 1-p, independently of the other vertices (for some parameter p). It is arguably one of the simplest models from statistical mechanics displaying a phase transition as the parameter p varies, i.e. a drastic change of behavior at some critical value of p, and it has been widely studied. Percolation can be used to analyze forest fire (or epidemics) processes. In such processes, all vertices of a (two-dimensional) lattice are initially vacant, and then become occupied at rate 1. If an occupied vertex is hit by lightning, which occurs at a (typically very small) rate, its entire occupied cluster burns immediately (all its vertices become vacant). In particular, we want to analyze the near-critical behavior of such processes, that is, when large connected components of occupied sites start to appear. They display a form of self-organized criticality, and the phase transition of Bernoulli percolation plays an important role: it appears "spontaneously". This talk is based on a joint work with Rob van den Berg (CWI and VU, Amsterdam).

评论

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:19803689
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602929;E-mail:wlkt@ustc.edu.cn。