中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Waveform embedding-unsupervised horizon picking
Waveform embedding-unsupervised horizon picking
教师介绍

本讲教师:施韫智
所属学科:理科
人  气:278

课程介绍
报告人简介:Yunzhi Shi graduated from USTC in 2015 with B.S. in geophysics, then joined UT Austin as a PhD student (supervisor: Sergey Fomel). He currently focuses on deep learning applications on seismic interpretation tasks, including fault detection, salt body classification, etc. 报告内容简介:Picking horizons from seismic images is a fundamental step that could critically impact the seismic interpretation quality. We propose an unsupervised approach, Waveform Embedding, based on a deep convolutional autoencoder network to learn to transform seismic waveform samples to a latent space in which any waveform can be represented as an embedded vector. The regularizing mechanism of the autoencoder ensures that similar waveform patterns are mapped to embedded vectors with shorter distance in the latent space. Within a search region, we transform all the waveform samples to latent space and compute their corresponding distance to the embedded vector of a control point that is set to the target horizon; we then convert the distance to a horizon probability map that highlights where the horizon is likely to be located. This method can guide the horizon picking across lateral discontinuities such as faults and is insensitive to noise and lateral distortions. In addition, the proposed unsupervised learning algorithm requires no training labels. We apply the proposed horizon picking method to multiple 2D/3D examples and obtain superiorly accurate results compared to the baseline method.

评论

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:22190201
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602929;E-mail:wlkt@ustc.edu.cn。

扫一扫,手机版