中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Nonlinear Variable Selection via Deep Neural Networks
Nonlinear Variable Selection via Deep Neural Networks
教师介绍

本讲教师:陈尧
所属学科:理科
人  气:770

课程介绍
摘要:This paper presents a general framework for high-dimensional nonlinear variable selection using deep neural networks under the framework of supervised learning. The network architecture includes both a selection layer and approximation layers. The problem can be cast as a sparsity-constrained optimization with a sparse parameter in the selection layer and other parameters in the approximation layers. This problem is challenging due to the sparse constraint and the nonconvex optimization. We propose a novel algorithm, called Deep Feature Selection, to estimate both the sparse parameter and the other parameters. Theoretically, we establish the algorithm convergence and the selection consistency when the objective function has a Generalized Stable Restricted Hessian. This result provides theoretical justifications of our method and generalizes known results for high-dimensional linear variable selection. Simulations and real data analysis are conducted to demonstrate the superior performance of our method.
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:24126299
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602929;E-mail:wlkt@ustc.edu.cn。

扫一扫,手机版