中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation
Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation
教师介绍

本讲教师:陶琪
所属学科:理科
人  气:1371

课程介绍
摘要:In this paper, we study superconvergence properties of the ultraweak-local discontinuous Galerkin (UWLDG) method for an one-dimensional linear fourth-order equation. With special initial discretizations, we prove the numerical solution of the semi-discrete UWLDG scheme superconverges to a special projection of the exact solution. The order of this superconvergence is proved to be k+min(3, k) when piecewise P^k polynomials with k ≥ 2 are used. We also prove a 2k-th order superconvergence rate for the cell averages and for the function values and derivatives of the UWLDG approximation at cell boundaries. Moreover, we prove superconvergence of (k+2)-th and (k+1)-th order of the function values and the first order derivatives of the UWLDG solution at a class of special quadrature points, respectively. Our proof is valid for arbitrary non-uniform regular meshes and for arbitrary k ≥ 2. Numerical experiments verify that all theoretical findings are sharp.
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:29186396
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602929;E-mail:wlkt@ustc.edu.cn。

扫一扫,手机版