On Normal Approximations of Linear Eigenvalue Statistics—Part I
|
教师介绍
![]() 本讲教师:苏中根 课程介绍
摘要:Normal approximation is arguably recognized as one of the most widely used tools in theoretical probability and applied statistics. A lot of powerful methods and tricks have been successfully developed in establishing normal approximations for various statistics since the classic de Moivre and Laplace central limit theorem was proved in the early 19th century. In this talk I shall briefly review some recent advances on normal approximations for linear eigenvalue statistics in random matrix theory. In contrast to the classic central limit theorems for sums of i.i.d.r.v.’s, one usually requires the test function f satisfies a certain strong regularity (smoothness) condition in the study of linear eigenvalue statistics, say Pn i=1 f(λi), where the λi are eigenvalues of a random matrix. What test function is good seems to depend heavily on the tricks used in the argument.
|
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!