中国科大学位与研究生教育
课程名称: 教师:
当前位置:
 >> 
 >> 
On Normal Approximations of Linear Eigenvalue Statistics—Part I
On Normal Approximations of Linear Eigenvalue Statistics—Part I
教师介绍

本讲教师:苏中根
所属学科:理科
人  气:5448

课程介绍
摘要:Normal approximation is arguably recognized as one of the most widely used tools in theoretical probability and applied statistics. A lot of powerful methods and tricks have been successfully developed in establishing normal approximations for various statistics since the classic de Moivre and Laplace central limit theorem was proved in the early 19th century. In this talk I shall briefly review some recent advances on normal approximations for linear eigenvalue statistics in random matrix theory. In contrast to the classic central limit theorems for sums of i.i.d.r.v.’s, one usually requires the test function f satisfies a certain strong regularity (smoothness) condition in the study of linear eigenvalue statistics, say Pn i=1 f(λi), where the λi are eigenvalues of a random matrix. What test function is good seems to depend heavily on the tricks used in the argument.
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:31357250
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602929;E-mail:wlkt@ustc.edu.cn。

扫一扫,手机版